
Abstract It is well known that the evolutionary process
leads to the majority of amino acids clustering in some
regions rather than being homogenously distributed along
a protein. Among numerous factors affecting the evolu-
tionary process is chance, whose impact therefore should
be present in a protein primary structure. The issue of
how to measure the random distribution of amino acids in
a primary structure is of importance for the understanding
of protein structure and functions. In this study, we use
the random principle as a tool to analyze and compare the
distributions of amino acids in the primary structure of
the p53 protein family. The results, for example, show
that the amino acids are distributed more randomly in
mouse p53 and less randomly in common tree shrew p53,
the distribution ranks of amino acids are relatively lower
in the functional regions (about 0.5 on average) than in
the whole sequences (about 1.2 on average) except for
mouse p53. From the probabilistic distribution view, the
composition of human p53 is relatively stable in the func-
tional regions rather than in the whole sequence, which
may suggest one of the potential effects on the mutations
inducing human cancers. In general, we can use the dis-
tribution probability to present quantitatively a type of
distribution of amino acids in a protein, to compare quan-
titatively the magnitude of clusters between different pro-
teins and to track the effect of chance on the evolutionary
process.
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Introduction

An intriguing phenomenon is that the majority of amino
acids cluster in some regions rather than being homoge-
nously distributed along the primary structure of a pro-
tein, although this could simply be due to natural selec-
tion. Generally, the distribution of amino acids in a pro-
tein can be affected by many factors, such as adaptation,
chance and history: (i) adaptation refers to the current se-
lective benefit of having a particular amino acid configu-
ration; (ii) chance affects amino acid distributions by
mutation and the fixation of mutations, which is most
easily seen to occur when selective differences between
different amino acid distributions are non-existent (neu-
tral evolution); and (iii) the effect of history can be seen
as the starting point for subsequent adaptation.

With respect to the impact of chance on the distribution
of amino acids in a protein, it is important to represent a
type of distribution of amino acids in a protein quantita-
tively. If so, we can compare the magnitude of clusters in
amino acids between different proteins quantitatively and
track the impact of chance on the evolutionary process.

In the last few years, we have used two random ap-
proaches to analyze the primary structure of different pro-
teins, [1, 2, 3, 4] which in fact provide us with ways to
present and compare quantitatively the impact of chance
on the random frequency of composition of amino acid
pairs and triplets in the primary structure and the impact
of chance on the distribution of amino acids and pairs in
the primary structure of a protein. Obviously it is more
important and meaningful to use our methods to analyze a
protein family; in this manner we can get not only a gen-
eral view of the impact of chance on the primary structure
of proteins across different species, more important we
can gain deep insight into protein structure and function.

In this study, we further develop our method to ana-
lyze the distributions of amino acids in all the proteins
from the tumor suppressor p53 family in order to obtain
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more understanding of p53 from the viewpoint of the
molecular modeling, because p53 acts as a tumor sup-
pressor in many tumor types by inducing growth arrest
or apoptosis.

With the distribution probability as a tool to measure
the impact of chance on protein primary structure, we
can compare the magnitude of clusters in amino acids
quantitatively between proteins across the p53 family.
Moreover, we can compare the distributions of amino 
acids in different functional regions to gain a deeper 
insight into the p53 family, as there are five functional
regions, i.e. (i) transcription activation, (ii) DNA-bind-
ing, (iii) nuclear localization signal, (iv) oligomerization
and (v) repression of DNA-binding.

Materials and methods

Tumor suppressor p53 protein family

Currently the p53 family includes 28 proteins with 
complete sequences in the Swiss-Protein data bank
(http://srs.ebi.ac.uk). [5] These proteins are from (i) bo-
vine (access number Q29628), [6, 7] (ii) cat (access
number P41685), [8, 9] (iii) chicken (access number
P10360), [10] (iv) dog (access number Q29537), [11, 12]
(v) African clawed frog (access number P07193), [13,
14] (vi) Chinese hamster (access number O09185), [15]
(vii) golden hamster (access number Q00366), [16] (viii)
human (access number P04637), [17, 18] (ix) cynomol-
gus monkey (access number P56423), [19] (x) green
monkey (access number P13481), [20] (xi) rhesus mon-
key (access number P56424), [21] (xii) mouse (access
number P02340), [22, 23] (xiii) guinea pig (access num-
ber Q9WUR6), [24] (xiv) pig (access number Q9TUB2),
[25] (xv) rabbit (access number Q95330), [26] (xvi) rat
(access number P10361), [27, 28] (xvii) sheep (access
number P51664), [29] (xviii) common tree shrew (access
number Q9TTA1), [30] (xix) woodchuck (access number
O36006), [31] (xx) barbel (access number Q9W678),
[32] (xxi) channel catfish (access number O93379), [33]
(xxii) Medaka fish (access number P79820), [34] (xxiii)
European flounder (access number O12946), [35] (xxiv)
xiphophorus helleri (access number O57538), [36] (xxv)
southern platyfish (access number Q92143), [36] (xxvi)
Congo puffer (access number Q9W679), [32] (xxvii)

rainbow trout (access number P25035) [37] and (xxviii)
zebra fish (access number P79734). [38]

Calculation of distribution probability

The calculation method has previously been published in
this journal; [4] we therefore briefly describe it through
an example. There are six phenylalanines (F) among 363
amino acids from the African clawed frog p53 protein.
We can group this protein into six parts, each contains
about 61 amino acids (363/6=60.5), and then calculate
the distribution probability according to the calculation
of occupancy problems of subpopulations and partitions.
[39] The distribution probability is r!/(q0!×q1!×...×qn!)×r!/
(r1!×r2!×...×rn!)×n–r for any type of distribution.

In the equation,! is the factorial function. r is the
number of a type of amino acid, we have r=6 for ‘F’s be-
cause there are six ‘F’s in African clawed frog. n is the
number of grouped parts in which amino acids can dis-
tribute, thus n=6 for ‘F’s. q is the number of parts with
the same number of amino acids, when six ‘F’s appear in
each of six parts in our example, we have q0=0, q1=6,
q2=0, q3=0, q4=0, q5=0 and q6=0, i.e. 0 part has 0 ‘F’, six
parts have 1 ‘F’, 0 part has two ‘F’s, 0 part has three
‘F’s, 0 part has four ‘F’s, 0 part has five ‘F’s and 0 part
has six ‘F’s. r1, r2,..., rn are the number of amino acids in
parts 1, 2,..., n. When six ‘F’s appear in each of six parts,
we have r1=1, r2=1, r3=1, r4=1, r5=1 and r6=1.

Tables 1 and 2 detail the calculation using this equa-
tion with respect to the distributions of six amino acids
in six parts. The first six columns in Table 1 show that
the protein is divided into six parts, and the first six cells
in each row show a possible configuration of amino 
acids; the seventh column is the numeric presentation of
each configuration; in Table 2 the first column shows the
details of the calculation of the distribution probability
(the first and second parentheses correspond to q and r in
the equation); the second column is the distribution
probability and the third column is the distribution rank.

Ranking distribution probability

In order to avoid too many decimal values, we rank the
distribution probabilities according to a descending 
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Table 1 All possible distribu-
tions of six ‘F’s in six parts Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Distribution pattern

F F F F F F 1, 1, 1, 1, 1, 1
F F F F FF 0, 1, 1, 1, 1, 2

F F FF FF 0, 0, 1, 1, 2, 2
FF FF FF 0, 0, 0, 2, 2, 2

F F F FFF 0, 0, 1, 1, 1, 3
F FF FFF 0, 0, 0, 1, 2, 3

FFF FFF 0, 0, 0, 0, 3, 3
F F FFFF 0, 0, 0, 1, 1, 4

FF FFFF 0, 0, 0, 0, 2, 4
F FFFFF 0, 0, 0, 0, 1, 5

FFFFFF 0, 0, 0, 0, 0, 6



order; thus the highest distribution probability is ranked
as one. Again in our examples, there are 11 possible dis-
tributions for six amino acids in six parts in Table 1, but
we rank them only to nine because the same probability
can be calculated from different distributions (ranks 3
and 4 in Table 2). In general, the smaller the rank, the
larger the distribution probability. Although there are
many possible distributions for a type of amino acid in a
protein (such as 11 possible distributions for six amino
acids in Table 1), a protein adopts only one possible dis-
tribution during its evolutionary process. Therefore there
is only one distribution probability/rank for each type of
amino acid and a maximum of 20 types of distribution
probability/rank in a protein.

Distribution rank in primary structure

As the composed numbers of amino acids are different
from one another even in the same protein family, we
standardize the distribution rank in a protein using the
distribution ranks per amino acid and for each type of
amino acid. These can be calculated by dividing the sum
of distribution ranks by the number of amino acids and
the sum of distribution rank of each type of amino acid
by the number of the corresponding type of amino acids.
Using human p53 as an example, this protein contains
393 amino acids and the sum of distribution ranks for 
all 20 types of amino acids is 685; thus the distribution
rank per amino acid is 685/393=1.734. Similarly, there
are 45 prolines (‘P’s) in human p53 and the distribution
rank for ‘P’s is 121; thus the distribution rank per each
‘P’ is 121/45=2.69. In this manner, we can compare the
distribution ranks on primary structure across a protein
family.

Comparison between proteins 
and between different functional regions

As each type of amino acid has a specific distribution
probability/rank in a protein, this probability is not simi-
lar to the probability obtained from statistical inference,
we therefore cannot treat the distribution probability in
the sense of statistical significance. However, we can un-

derstand the likelihood of occurrence of a type of distri-
bution, for example, the distribution of ‘F’, ‘F’, ‘FF’ and
‘FF’ is 22.5 times (0.347222/0.015432) more likely to
occur than the distribution of ‘F’, ‘F’, ‘F’, ‘F’, ‘F’ and
‘F’ (Tables 1 and 2).

Comparison of distribution probability 
with homogenous distribution probability

As each type of amino acid has a certain distribution
probability in a protein, we can compare the distribution
probability with the homogenous distribution probability
in order to determine whether a distribution of amino 
acids is different from a homogenous distribution. For
example, the probability of homogenous distribution of
22 amino acids in a protein is 3.2921×10–9, while the
real distribution probability of 22 threonines (‘T’s) is
0.058542 in pig p53, so the chance of homogenous 
distribution of ‘T’s is quite small.

Results

Figure 1 shows the distribution rank per amino acid in
proteins across the p53 family. It can be seen that mouse
p53 has the lowest distribution rank, whereas the p53
from common tree shrew has the highest distribution
rank, whose value increases 3.8-fold compared to that of
mouse p53. This difference implies that chance has more
impact on the amino acid distribution in mouse p53 and
less impact in common tree shrew p53. The results also
suggest that the distribution of amino acids is relatively
unpredictable in common tree shrew p53.

Figure 2 shows the distribution rank per amino acid in
different functional regions across the p53 family. In the
transcription activation region, the lowest distribution
rank is calculated from rabbit p53, indicating that chance
has more impact on its amino acid distribution in this re-
gion, while the highest distribution rank is calculated
from channel catfish and zebra fish p53 (about 75%
higher than that of rabbit p53), showing that chance has
less impact on the amino acid distribution in this region.

In the DNA-binding region, human and common tree
shrew have the lowest value of distribution rank, which
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Table 2 Calculation of distri-
bution probability and rank
with respect to distribution 
patterns in Table 1

Calculation of probability (6!×6!×6–6 divided by) Probability Rank

(0!×6!×0!×0!×0!×0!×0!)×(1!×1!×1!×1!×1!×1!) 0.015432 5
(1!×4!×1!×0!×0!×0!×0!)×(0!×1!×1!×1!×1!×2!) 0.231481 2
(2!×2!×2!×0!×0!×0!×0!)×(0!×0!×1!×1!×2!×2!) 0.347222 1
(3!×0!×3!×0!×0!×0!×0!)×(0!×0!×0!×2!×2!×2!) 0.038580 4
(2!×3!×0!×1!×0!×0!×0!)×(0!×0!×1!×1!×1!×3!) 0.154321 3
(3!×1!×1!×1!×0!×0!×0!)×(0!×0!×0!×1!×2!×3!) 0.154321 3
(4!×0!×0!×2!×0!×0!×0!)×(0!×0!×0!×0!×3!×3!) 0.006430 7
(3!×2!×0!×0!×1!×0!×0!)×(0!×0!×0!×1!×1!×4!) 0.038580 4
(4!×0!×1!×0!×1!×0!×0!)×(0!×0!×0!×0!×2!×4!) 0.009645 6
(4!×1!×0!×0!×0!×1!×0!)×(0!×0!×0!×0!×1!×5!) 0.003858 8
(5!×0!×0!×0!×0!×0!×1!)×(0!×0!×0!×0!×0!×6!) 0.000129 9



means that their distribution is probabilistically simple.
By contrast, the highest distribution rank is from channel
catfish p53 (about 1.3-fold higher), excluding random
distributions of amino acids in this region.

In the nuclear localization signal region, the lowest
distribution rank comes from cat p53, while the highest
value is calculated from the p53 of barbel and European
flounder, which is increased by 77% over that of cat p53.

In the oligomerization region the distribution rank is
similar throughout the whole family and the biggest 
difference is only 40%. This value is higher in European
flounder, chicken and common tree shrew and lower in
barbel, Congo puffer, Medaka fish and woodchuck.

In the repression of the DNA-binding region, the 
bovine p53 shows the lowest value of distribution rank,
whereas the mouse and rat p53s have the highest value
(75% higher). These results indicate that the distribution
of amino acids is more random in the former but not in
the latter.

Figure 3 shows the distribution rank for each type 
of amino acid in the proteins across the p53 family. 
Although this measure is different from species to 
species and different from one type of amino acid to 
another, we can see that the distribution probability
shifts from homogeneity to heterogeneity. The change in
this value is highly consistent with the distribution rank
per amino acid in the whole sequence. Among the p53
family, about half of the types of amino acid give rela-
tively low values of distribution rank, indicating that
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Table 3 Homogenous distribution probability with respect to the
different numbers of amino acids

Number Probability Number Probability
of amino of amino 
acids acids

2 0.5000 3 0.2222
4 0.0938 5 0.0384
6 0.0154 7 0.0061
8 0.0024 9 0.0009

10 0.0004 11 0.0001
12 5.3723×10–5 13 2.0560×10–5

14 7.8454×10–6 15 2.9863×10–6

16 1.1342×10–6 17 4.2997×10–7

18 1.6272×10–7 19 6.1486×10–8

20 2.3202×10–8 21 8.7446×10–9

22 3.2921×10–9 23 1.2381×10–9

24 4.6520×10–10 25 1.7464×10–10

26 6.5511×10–11 27 2.4556×10–11

28 9.1985×10–12 29 3.4435×10–12

30 1.2883×10–12 31 4.8174×10–13

32 1.8004×10–13 33 6.7255×10–14

34 2.5112×10–14 35 9.3724×10–15

36 3.4966×10–15 37 1.3040×10–15

38 4.8612×10–16 39 1.8116×10–16

40 6.7491×10–17 41 2.5136×10–17

42 9.3585×10–18 43 3.4834×10–18

44 1.2962×10–18 45 4.8222×10–19

46 1.7935×10–19 47 6.6691×10–20

48 2.4793×10–20 49 9.2150×10–21

50 3.4243×10–21

Fig. 1 Distribution rank 
per amino acid in the whole 
sequence across the p53 family



these amino acids distribute more randomly in the se-
quences, whereas the amino acids with high values of
distribution rank imply that their distribution has been
less affected by chance.

Table 3 shows the homogenous distribution probabili-
ty with respect to the different numbers of amino acids. It
can be seen that the homogenous distribution probability
is very low; thus it is not easy for a protein to adopt the
homogenous distribution for a certain type of amino acid.

We can compare the distribution probability among
different types of amino acids with the use of the current
approach (Fig. 3). Some types of amino acid, such as
asparagines (N), have a very low rank value, which 
indicates that the distribution of these amino acids is

highly random in the p53 family. The amino acids with
a high rank value are not randomly distributed and re-
sult more likely from a deliberate evolutionary process,
for example, alanines (A) in common tree shrew may
link to some special functional units. Also, the homoge-
nous distribution of a type of amino acid appears with a
very low probability (Table 3). Thus, the tendency for
amino acids to cluster in the protein primary structure
results from the necessity of both function and random-
ness.
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Fig. 2 Distribution rank per
amino acid in different func-
tional regions across the p53
family



Discussion

With the advance in experimental and theoretical studies,
we always can gain new insights from the primary struc-
ture of proteins. The random analysis can throw light on
the underlying reasoning for the primary structure of
proteins, not only because pure chance is now consid-
ered to lie at the very heart of nature, [40] but also be-
cause it can provide a quantitative measure to compare
the magnitude of clusters of amino acids in a protein.

The primary structure of proteins is the basis for 
higher level structures and protein functions; thus the
primary structure always provides the basis for studying
and modeling (i) the patterns of amino acid composition,
(ii) the patterns of natural and artificial mutations, (iii)
the similarity within a protein family, (iv) the similarity
between protein families, (v) the mechanism for con-
struction of higher level structures, (vi) the topological
basis for higher level structures, etc. The patterns of 
amino acid composition and mutations are archived via
experimental methods and annotation. [41] The most
popular analysis of the similarity within a protein family
and between protein families is archived via multiple 
sequence comparisons and alignments using standard
software, for example, BlastP. [42] There are several 
other approaches for similarity analysis, such as fast
Fourier transform, [43] the statistical approach, [44] 
linguistic approaches [45, 46] and pattern graphs. [47]
Particularly worth mentioning are two series of studies

using statistical methods to analyze and predict locations
of amino acids, distribution, structure, etc. [48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58]

However, the general difference between previous 
approaches and ours is that the previous studies concen-
trated on the description of primary structures while we
are trying to explain the reason for the construction of
primary structure. For example, the speed of evolution
in a species must catch up with the environmental
changes, otherwise the species would die. This requires
the natural selection to be efficient. For example, the
synthesis of a protein should be less energy- and time-
consuming. The choice of the amino acid sequences
with a high probability of occurrence is certainly a way
to be efficient, which can be viewed as the effect of
chance on the evolutionary process. However, at this
stage we are still not aware whether or not nature does
so, although we observed that the distribution probabili-
ties for several types of amino acids are at or very near
to the probabilistically simplest distribution in this
study. For example, five types of amino acids occur
with the highest probability in mouse and rat p53. 
There is the possibility that the distributions with a 
high distribution probability may not be deliberately
evolved and conserved, whereas the distributions with a
low distribution probability should be deliberately
evolved and conserved, because nature is clever enough
to spend only the necessary energy and time during 
evolution.
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Fig. 3 Distribution rank per
each type of amino acid in the
proteins across the p53 family



Although the distribution rank of amino acids varies
from species to species, our results demonstrate that this
value is relatively lower in the functional regions (about
0.5 on average) than in the whole sequences (about 1.2
on average), except for mouse p53. Also, this measure
shows less difference between different species in all of
the functional regions as opposed to the whole sequence.
Therefore, the functional regions (especially the DNA-
binding region) are not only conserved through the evo-
lutionary process of the species, but also arranged in a
probabilistically simple way, which guarantees the func-
tional base of the p53 protein. Taking five functional 
regions into account, the DNA-binding region is larger
(about 190 amino acids) than the others. Mutations in
this region may lead to p53 dysfunction and induce 
cancers, which is true in humans as the majority of such
mutations are found in the DNA-binding region. [59, 60]

Subsequently, it is natural to ask the question why
there are so many mutations in human p53 that lead to
various cancers in humans. The current results may give
information on this issue. In mouse p53, the distribution
of amino acids is probabilistically simple, as the distribu-
tion rank is about the same in the whole sequence and in
different functional regions as well, which may suggest
that the primary structure of mouse p53 is one of the
more stable among the p53 family. By contrast, the dis-
tribution probability of amino acids in human p53 shows
dual characteristics: the distribution rank is lower in the
functional regions but higher in the whole sequence
(more than two times higher than that in mouse p53).
From the distribution probabilistic viewpoint, the com-
position of human p53 is relatively more stable in the
functional regions than in the whole sequence. This con-
tradictory feature may contribute to one of the potential
effects on mutation.

We did not compare our results with those obtained
from multiple sequence comparisons and alignments, not
only because the multiple sequence comparisons and
alignments are a routine approach easily used for all the
proteins in a databank, but more important is that each
approach has its own advantage and addresses specific
issues. In general, multiple sequence comparisons and
alignments are focused on finding and ranking the simi-
larity among all the proteins in a databank, while our 
approach tries to use the random mechanism as the cause
to explain the distribution of amino acids.

We also did not use the information entropy to 
express our results, because the information entropy does
not deal with a particular distribution of amino acids
along a protein, although it deals with the numbers of
amino acids.

With our first random approach to analyzing the 
primary structure of mouse and sheep p53, [1, 2] we 
attempted to understand why a certain type of amino 
acid rather than the other types is associated with a type
of amino acid in amino acid pairs and triplets. Our first
approach [3] and the approach in this study are attempts
to explore the quantitative tools to measure, compare and
explain the primary structures of proteins.
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